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Problem Introduction

Flux Pinned Interfaces (FPIs)

• A promising technology to manage the dynamic 

behavior of close-proximity spacecraft

• Provide passively stable equilibrium

• Flux pinning occurs when a Type-II superconducting 

material is cooled to below its critical temperature in 

the presence of an external magnetic field

• Typical critical temperature: ~77 K

• Makes measuring dynamic interaction challenging

• In need of technology development

• Characterize dynamic interaction

• Flight-like thermal subsystem
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Problem Introduction

Testbeds for Measuring Dynamics

• Potential application: Sample capture for Mars sample return

• Sample return orbiter

• Orbiting spacecraft containing superconductors

• Orbiting sample

• Sphere containing planetary samples with permanent magnets on 

perimeter

• Thermal subsystem needs for testbed:

• No condensation on surfaces

• Operational times on the order of many hours

• Fine temperature control of superconductor temperature

• Stability and accuracy important below 88 K

• Minimal spacing between superconductor and magnets with 

precision alignment

• Minimal use of ferromagnetic material in system

• Limits external forces and torques
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Solution

Device Description

• Modular thermal vacuum system

• Able to be used in multiple testbeds

• Non-consumable cooling source

• Cryocooler with flight-heritage

• ECOSTRESS

• Thales LPT9310

• 7.0 kg

• Meets thermal needs

• Room temperature exterior

• Indefinite operation

• Closed loop temp control

• Aluminum near FPI
3/7/2019
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Solution

Device Description

• 3x Yttrium barium copper oxide (YBCO) 

superconductor disks in aluminum housings

• Thermally connected to cryocooler by aluminum 

conduction path

• Flexible thermal straps used for compliance

• Mechanically mounted to delrin cap with thermal 

isolation

• Multi-layer insulation (MLI) on cold components
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Solution

Thermal Design

• Temperature difference across 

superconductor case <1 K

• Conduction paths:

• Tortuous from superconductor to delrin cap

• Excellent from superconductor to coldtip

• Vacuum environment eliminates 

convective heat transfer

• Heat rejected from the cryocooler to 

ambient air by convection

• Radiative heat transfer from vacuum to 

cold components minimized with MLI
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Solution

Operational Timeline

• Place/mount a permanent magnet near each delrin cap 

for field cooling

• Turn on vacuum pump

• Wait ~1 hour for pressure to reach 10-4 torr

• Turn on cryocooler and cooling fans

• Wait ~13 hours for superconductors to be less than 88 K

• Remove magnet mounting and observe magnet 

equilibrium position

• Perform dynamics experiments in testbed

• Can operate for weeks at a time

• Turn off cryocooler

• FPI maintained for ~30 minutes with cryocooler off

• Warm up takes ~66 hrs without heating
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0 10 20 30 40 50 60
75

80

85

90

T
em

p
er

a
tu

re
 (

K
)

Time (min)

 

 

Top SC case

Left SC case

Right SC case

Coldtip

Video(s) of 

magnets floating



jpl.nasa.gov

Solution

Thermal Performance and Modeling

• Device able to bring superconductors below 88 K with 105 W 

of cryocooler input power

• Multi-mode heat transfer: conduction and radiation

• Difficult to solve analytically

• Thermal model created in SolidWorks 2016

• Conduction along path from superconductor to cold tip

• Thermal interface resistances accounted for

• Radiation from environment to cold components

• Model temperature predictions agree with measured data

• Predicted heat lift compares well with cryocooler performance 

measurements

• Model can be applied to spacecraft environment

• To predict power consumption of cryocooler
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Solution

Successful Demonstration in Testbeds

• Ground with air bearing: Four degrees of freedom

• Operated for approximately a month at a time

• Microgravity: Six degrees of freedom

• Successfully flown on two Zero-G flight campaigns

• Getter pump used to maintain vacuum
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Solution

Predicting Thermal Performance in Space

• Model setup:

• Conductive path from superconductor to 

cold tip same as device thermal model

• MLI emissivity larger than device

• Conduction to delrin cap eliminated

• Surrounding temperature of 300 K

• Cold tip temperature of 80 K

• 1.82 W of cooling total

• 0.403 W per superconductor plus 50% 

margin for concept-definition phase

• Cryocooler consumes 57 W of power

• 293 K heat rejection

• Superconductors at 81.65 K

3/7/2019

0.403 W cooling
80 K

0.08 W radiation

0.323 W radiation

0.015 emissivity

300 K surroundings

0.05 emissivity

300 K surroundings

Temperature

82 K

80 K

81 K

80.5 K

81.5 K



jpl.nasa.gov

Solution

Modifying Device for Space

• Remove vacuum enclosure

• Radiator to reject 57 W of cryocooler heat

• 0.138 m2 at 300 K

• Flight electronics: Iris Technologies Low-cost 

control electronics

• 2 kg and >85% efficiency

• Other potential changes:

• Thermal strap from aluminum to pyrolytic 

graphite film

• Reduces mass

• Better thermal conductance

• Reduce thermal interface resistances
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Summary/ Recommendations
• Thermal subsystem successful in two different testbeds

• Device will operate indefinitely with vacuum pump

• Thermal modeling principles were developed and model was verified

• Model used to predict power consumption in space

• Further technology development: 

• Operate the thermal system in a larger vacuum chamber 

• Flight-like demonstration

• Verify the model predictions without heat leak to the vacuum chamber

• Develop cryogenic bolted thermal interfaces for predictability and repeatability

• Non-standard cryogenic bolted thermal interfaces hard to predict

• Future applications should be wary of the superconductors mounting

• Thermal isolation necessary

• Knowledge of absolute location important
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Thank you for your attention

Questions?
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